
The secret behind of them

Luram Archanjo



Who am I?

● Software Engineer at Sensedia

● MBA in Java projects

● Java and Microservice enthusiastic



Agenda

● Microservices

● Java & Frameworks

● Ahead of Time (AOT) Compilation

● GraalVM

● Questions



Moving to Microservices

Feature A

Feature B

Feature C

Monolith

Microservice Microservice

Microservices

Microservice



Scalability

Feature A

Monolith Scalability

Microservice Microservice

Microservices Scalability

Microservice

Microservice

Microservice

Microservice

Microservice

Microservice

Microservice

Microservice

Feature B Feature C

Feature A Feature B Feature C

Feature A Feature B Feature C

Waste Waste

Waste Waste

Waste



Our resources are finite!



How to use less resources 
using Java language?



Our frameworks are design to 
low memory footprint?



No, because we’ve tried to 
adapt existing legacy 

technologies for 
Microservices



What do Spring and Jakarta EE undertaking? What are the results about it?

Spring is an amazing technical achievement and does so many things, but does them at Runtime.

● Reads the byte code of every bean it finds.
● Synthesizes new annotations for each annotation on each bean method, constructor, field etc. 

to support Annotation metadata.
● Builds Reflective Metadata for each bean for every method, constructor, field etc.



The rise of Java 
Microframeworks



Microframeworks

A microframework is a term used to refer to minimalistic web application frameworks:

● Without authentication and authorization

● Without database abstraction via an object-relational mapping.

● Without input validation and input sanitation.



Less modules, functions and 
dependencies are not 

enough!



Ahead of Time (AOT) Compilation

Ahead-of-time compilation (AOT compilation) is the act of compiling a higher-level programming 
language, or an intermediate representation such as Java bytecode, into a native machine code so 
that the resulting binary file can execute natively.

Web Android
Java

Google Dagger 2

?



use Ahead of Time (AOT) 
Compilation 



What are the results of using 
Ahead of Time (AOT) 

Compilation?



The results of using Ahead of Time (AOT) Compilation

● Startup time around a second.

● All Dependency Injection, AOP and Proxy generation happens 
at compile time.

● Can be run with as little as 15mb Max Heap.



I don't believe, show me!



Is it possible to 
improve more?



Yes, with



GraalVM is an universal virtual machine:

● Runs Java, Scala, Kotlin etc.

● Native image

Native image works well when:

● Little or no runtime reflection is used.
○ Use third party libraries selectively.

● Limited or no dynamic classloading.



What are the results of using 
Native Image?



The results of using Native Image

Source: https://www.graalvm.org/docs/why-graal/

https://www.graalvm.org/docs/why-graal/


The results of using Native Image

Source: https://www.graalvm.org/docs/why-graal/

https://www.graalvm.org/docs/why-graal/


GraalVM Native Image, currently 
available as an Early Adopter 

Technology

Source: https://www.graalvm.org/docs/why-graal/

https://www.graalvm.org/docs/why-graal/


What else Micronaut & 
Quarkus do?



There were born in 
Microservices and Cloud era



There were born in Microservices and Cloud era

● Observability
○ Open Tracing

■ Zipkin
■ Jaeger

○ Health Checks
○ Metrics

● Fault Tolerance
○ Timeout
○ Retry
○ Circuit Breaker
○ Fallback

● Dependency Injection and Inversion of Control (IoC)

● Blocking or Non-Blocking HTTP Server



They are providing Java 
Serverless Application 

Adoption



Summary

2º Place

1º Place

3º PlaceAhead of Time (AOT) 
Compilation

● Low memory 
footprint

● Fast Startup

● IoC

Native Image

● Low memory 
footprint 5x lower

● Fast Startup 50x 
lower

Cloud Native Features

● Observability

● Fault Tolerance

● Distributed 
Configuration



Which one is the best?
 

You decide! 

The important thing is that they are 
changing the Java World



Thanks a million!
Questions?

/larchanjo

/luram-archanjo


